RECLA program

نویسندگان

  • Luís Torgo
  • João Gama
چکیده

This document describes the program RECLA (REgression through CLAssification system). The program is able to learn a continuous dataset by transforming it into a classification problem and them applying a discrete class learner to the resulting dataset. It works as a kind of general interface program between existing discrete learners and the discretization module we have developed. Although RECLA receives as a parameter the discrete class algorithm to use, from the user’s point of view, it behaves like a continuous class learning algorithm (i.e. the user gives as input a continuous class problem and receives a theory as output).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Using Classification Algorithms

This paper presents an alternative approach to the problem of regression. The methodology we describe allows the use of classification algorithms in regression tasks. From a practical point of view this enables the use of a wide range of existing Machine Learning (ML) systems in regression problems. In effect, most of the widely available systems deal with classification. Our method works as a ...

متن کامل

Recent Developments in the Management of Post- Traumatic Pain

A variety of analgesic options are currently available for the treatment of acute and chronic post-traumatic pain (PTP). These include nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, and adjuvant analgesics (i.e., antidepressants, anticonvulsants, N-methyl-D-aspartate receptor antagonists), as well as muscle relaxants and local anesthetics. Unfavorable safety profiles have limited the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007